Contribution from the Chemistry Department, University of British Columbia, Vancouver **8,** British Columbia, Canada

Synthesis of Transition Metal Derivatives of Arsenic, Antimony, and Bismuth with $M-E$ σ Bonds

W. R. CULLEN,* D. J. PATMORE, and **J.** R. SAMS

Received July 28, 1972

The group V trihalides EX_3 ($E = As$, Sb , Bi) react with metal carbonyl anions and/or metal carbonyls with metal-metal bonds, to give complexes containing the cations $[X_2E(Fe(CO)_2Cp)_2]^+$ (X = Cl, Br; E = As, Sb), $[X5b(Fe(CO)_2Cp)_3]^+$ (X = Cl, Br), $[Sub(Fe(CO)_2(NO)PPh_3)_4]^+$, and $[Sub(Co(CO)_3PPh_3)_4]^+$. These are associated with a variety of anions which include FeX_4^2 -, FeX₄, SbBr₄-, Sb₂Cl₇-, and possibly CoX₄²⁻. Neutral species are also obtained from arsenic and antimony halides. Bismuth halides yield only uncharged compounds. Those characterized are as follows: $X_2AsFe(CO)_2CP$ (X = Cl, Br), $Cl_2AsFe(CO)_2(NO)Ph_1$, $I_2SbFe(CO)_2CP$, $Cl_2BiFe(CO)_2(NO)Ph_1$, $Bi(Fe(CO)_3(NO))^2$, $Bi(Fe(CO)_2(NO)^2)$ $PPh_{3})$ ₃, and Bi(Co(CO)₃PPh₃)₃. The reaction of XFe(CO)₂Cp with SbX₃ yields SbX₃(Fe(CO)₂CpX)₂ while SbCl₅ and $(Fe(CO)_2Cp)_2$ afford $[(Fe(CO)_2Cp)_2Cl][SbCl_6]$.

Introduction

group **I11** or IV elements and transition metals are many and varied, very few such derivatives involving group **V** elements are known (excluding cases where the group V element acts as a two-electron donor or three-electron bridge). Previously reported compounds include $\text{As}_2\text{Fe}_3(\text{CO})_{11}$, $\text{SbFe}_2(\text{CO})_8$, $SbFe(CO)_4,$ ¹ $Bi_2Fe_5(CO)_{20},$ ¹ $(CF_3)_2AsMo(CO)_3 \pi \cdot C_5H_5,$ ² $(CF_3)_2$ AsFe $(CO)_2(\pi \cdot C_5H_5)^2$ Ph₂BiRe(CO)₅,³ Ph₂BiCo- $(DMG)_2Py, ^{4,5}Me_2AsCo(CO)_4, ^{6}(C_6F_5)_2AsFe(CO)_2Cp;$ $(C_6F_5)_2A_5MO(CO)_3Cp,'Sb_4Co_4(CO)_{12}^S, As_3Co(CO)_3,'$ $\text{As}_2\text{Co}_2(\text{CO})_6,^{10}$ $\text{As}_2\text{Co}_2(\text{CO})_5$ PPh₃,¹⁰ [ClSb(Fe(CO)₂(π - (C_5H_5))₃]₂[FeCl₄],¹¹ Cl₂SbCo(CO)₄, and Bi(Co(CO)₄)₃,¹² Although compounds involving metal-metal bonds between

The purpose of the present investigation is to study the preparation of derivatives of this sort on a semisystematic basis with the object of discovering which transition metals can be σ bonded to arsenic, antimony, or bismuth. Because antimony is a Mossbauer nucleus, it is also hoped to study the bonding in any new compound using this technique. The preparative work is described in this paper.

A preliminary investigation of the reaction of $ECl₃$ (E = As, Sb, Bi) with $(Fe(CO)₂CP)₂$ has already been published.¹³

Experimental Section

carried out in a nitrogen atmosphere, and a conventional vacuum system was used to manipulate volatile reagents. Evaporation of solvent was carried out on a rotary evaporator under reduced pressure. Unless otherwise specified, all reactions and manipulations were

(1) W. Hieber, **J.** Gruber, and F. Lux, *Z. Anorg. Allg. Chem.,* 300,275 (1959).

(2) W. R. Cullen and R. G. Hayter, *J. Amer. Chem. SOC.,* 86, 1030 (1964).

- (3) A. N. Nesmeyanov, K. N. Anisimov, N. E. Kolobova, and **V.** N. Khandozhko, *Dokl. Akad. Nauk SSSR,* 156, 383 (1964).
- (4) G. N. Schrauzer and G. Kratel, *Angew. Chem., Int. Ed. Engl.,* 4, 146 (1965).

(5) $E = As$, Sb, Bi; $X = CI$, Br, I; Ph = C₆H₅; DMG = dimethylglyoximate anion; $Py = pyridine$; $Me = CH_3$; $CP = \pi \cdot C_5H_5$; $THF = tetrahydrofuran$.

(6) **Y.** L. Baay and **A.** G. MacDiarmid, *Inorg. Nucl. Chem. Lett.,* 3, 159 (1967).

(7) M. Cooke, M. Green, and D. Kirkpatrick, *J. Chem. SOC. A,* 1507 (1968).

(8) **A. S.** Foust and L. F. Dahl, *J. Amer. Chem. Soc.,* 92, 7337 (1970).

(9) **A.** S. Foust and L. F. Dahl, *J. Amer. Chem. SOC.,* 91, 5631 (1969).

(10) **A. S.** Foust and L. F. Dahl, *J. Amer. Chern.* **SOC.,** 91, 5633 $(1969).$

(11) Trinh-Toan and L. F. Dahl, J. *Amer. Chem. SOC.,* 93, 2654 (1971).

(12) W. **A.** G. Graham and D. **J.** Patmore, unpublished notes. (1 3) W. R. Cullen, D. **J.** Patmore, **J.** R. Sams, M. **J.** Newlands,

and L. K. Thompson, *Chem. Commun.,* 952 (1971).

Iodobis(trifluoromethy1)stibine and the mercury derivatives Hg [Fe- (CO) ₃NO]₂ and $Hg[Fe(CO)$ ₂(NO)P(C₆H₅)₃]₂ were prepared as described in the literature with one important modification. The yield of $Hg[Fe(CO)₃NO]$, was considerably increased by the use of stoichiometric amounts of HgCl₂ in place of $Hg(CN)_2$. All other reagents were obtained from commercial sources and used without further purification, with the exception of dichloromethane and n-pentane which were dried over $CaCl₂$. Microanalyses (Table I) were performed by Mr. Peter Borda of this department and Drs. F. and E. Pascher, Mikroanalytisches Laboratorium, Bonn, West Germany. The infrared spectra listed in Table I were recorded on a Perkin-Elmer **457** spectrophotometer calibrated with DCl gas and $H₂O$ vapor.

Dichlorobis(dicarbonylcyclopentadieny1iron)an timony(V) $Heptachlorodian timonate(III), (Cl₂Sb[Fe(CO)₂(π -C₅H₅)]₂)(Sb₂Cl₇).$ A solution containing **3.4** g **(14.9** mmol) of SbCl, and **1.7** g **(4.8** mmol) of $[Fe(CO)₂(\pi-C₅H₅)]₂$ in 80 ml of dichloromethane was left at **20"** for **8** hr. At the end of this period, **2.9** g of product (orangebrown plates) had precipitated. The compound can be recrystallized by dissolving in hot CH_2Cl_2 and cooling to 0° giving orange cubes of product. The same prdduct was obtained using a **6:l** mole ratio of

SbCl₃ to $[Fe(CO)_2(\pi-C_sH_s)]_2$. Dichlorobis(dicarbonylcyclopentadienyliron)antimony(V) Hexafluorophosphate(V), $(Cl_2Sb[Fe(CO)_2(\pi-C_5H_5)]_2)(PF_6)$. A solution of **0.5** g **(3.0** mmol) of NaPF, in **5** ml of acetone was added to 1.0 **g** (0.97 mmol) of $(Cl_2Sb[Fe(CO)_2(\pi-C, H_2)],(Sb_2Cl_7)$ in 80 ml of CH,Cl,. The solution was filtered and evaporated to about **5** ml giving orange crystals of product. These were recrystallized from CH,Cl, and dried *in vacuo.*

The corresponding orange tetrathiocyanatodiamminechromate- (III) salt, $\left(CI_2Sb[Fe(CO)_2(\pi-C_5H_5)]_2\right)\left(Cr(SCN)_4(NH_3)_2\right)$, was prepared similarly using **0.5** g **(1.4** mmol) of Reinecke salt (NH,[Cr(SCN),- $(NH₃)₂$. H₂O) in 10 ml of methanol, in place of the NaPF₆ solution.

Dibromo(dicarbonylcyclopentadienyliron)antimony(V) Tetrabromoantimonate(III), $(Br_2Sb[Fe(CO)_2(\pi-C_5H_5)]_2)(SbBr_4)$. A mixture of **1.3 g (5.7** mmol) of SbBr, and **1.25** g **(3.5** mmol) of $[Fe(CO)₂(\pi-C₅H₅)]₂$ in 10 ml of $CH₂Cl₂$ was left for 16 hr at 20° affording orange needles of product. This was purified by recrystallization from acetone-ether.

Bis(trifluoromethyl)bis(dicarbonylcyclopentadienyliron)antimony(V) **Diiodobis(trifluoromethyl)antimonate(III),** ([CF,], Sb **[Fe-** (CO) ₂ $(\pi$ -C₅H_s $)$]₂ (CF_3) ₂ SbI_2 *)*. A mixture of 1.0 g (2.6 mmol) of $(CF₃)₂$ SbI and 0.5 g (1.4 mmol) of $[Fe(CO)₂(\pi-C₅H₅)]₂$ was allowed to react in an evacuated tube at 20" for **12 hr.** The reaction mixture was then washed with n-pentane and the yellow solid remaining was recrystallized from CH,Cl,-n-pentane affording **0.5** g of yellow crystals of product.

Trichlorobis(chlorodicarbonylcyclopentadieny1uon)antimony- (III), $[\text{CIFe(CO)}_2(\pi \cdot \text{C}_5\text{H}_5)]_2\text{SbCl}_3$ **.** A mixture of 0.5 g (2.36 mmol) of $CIFe(CO)_{2}(\pi \cdot C_{5}H_{5})$ and 0.5 g (2.19 mmol) of SbCl₃ in 30 ml of ether was evaporated to small volume producing **0.6** g of red crystals of product. This was recrystallized from ether. The same product was obtained using **2.36** mmol of ClFe(CO),(n-C,H,) and **4.4** mmol of SbCl,. It was also found to be a by-product of the reaction of SbCl₃ with $[Fe(CO)_2(\pi-C_sH_s)]_2$.

p-Chloro.bis(dicarbonylcyc1opentadienylion) Hexachloroanti- $\text{monate}(V)$, $(\text{[Fe(CO)}_2(\pi \text{-} C, H,)]_2$ Cl)(SbCl₆). Antimony pentachloride

 $\frac{1}{\sqrt{2}}$

 $\frac{1}{2}$

(2 g) was slowly added to a solution of 1.0 g (2.8 mmol) of $[Fe(CO)₂$ - $(\pi\tilde{C}_5H_5)$, in CH₂Cl₂ cooled to 0°. After gas evolution had ceased, the solution was evaporated to a small volume. Addition of chloroform gave red crystals of product which was recrystallized from $CH₂Cl₂$; yield 0.3 g.

Chlorotris(dicarbonylcyclopentadienyliron)antimony(V) Tetrachloroferrate(lII), **(CISb[Fe(CO),(n-C,H,)],)(FeC14).** A mixture of 1.2 g (5.3 mmol) of SbCl, and 5.4 g (15.3 mmol) of $[Fe(CO), (\pi (C_5H_5)$, in 50 ml of 1,2-dichloroethane was refluxed for 20 hr. At the end of this period 4.0 g of fine dark red crystals had deposited. These were dissolved in 100 ml of acetone. The solution was filtered and evaporated to 20 ml. Addition of 80 ml of ether precipitated dark red crystals of a compound which has not been fully characterized. The mother liquor was evaporated to 20 ml and a further 80 ml of ether was slowly added affording red crystals of crude product. This was recrystallized from acetone-ether and dried *in vacuo.*

An acetone solution of 1.0 g of the crude product of this reaction was filtered, and to it was added a solution of 0.7 g of $\text{NaB}(C_6H_5)_4$ in 50 ml of methanol. Evaporation of the solution to a small volume precipitated dark glistening crystals of $(CISb[Fe(CO)_2(\pi-C_{\epsilon}H_{\epsilon})]_3)$ - $(B(C_6H_5)_4)$, which were recrystallized from acetone-ether.

The corresponding hexafluorophosphate(V) salt, $(CISb[Fe(CO)₂ (\pi\text{-}C_sH_s)$],)(PF₆), and the tetrathiocyanatodiamminechromate(III) salt, $(CISb[Fe(CO), (\pi-C_sH_s)]_3)(Cr(SCN)_4(NH_3)_2)$, were prepared similarly using respectively 0.7 g of NaPF₆ and 0.5 g of Reinecke salt, in place of $\text{NaB}(C_6H_5)_4$. Recrystallization of these salts was from CH_2Cl_2 . The latter product recrystallized with about $\frac{2}{3}$ mol of dichloromethane of crystallization which was not removed *in vacu 0.*

Reaction **of** Antimony Tribromidc with Tetracarbonyldicyclopentadienyldiiron. (i) A mixture of 1.0 g (2.73 mmol) of $SbBr₃$ and 2.0 g (5.65 mmol) of $[Fe(CO)₂(C_sH_s)]₂$ was heated to 120° under a CO pressure of 800 psi for 8 hr. The reaction mixture was extracted first with CH_2Cl_2 to remove unreacted starting material and then with about 200 ml of acetone. The latter extract was evaporated to 15 ml affording 1.2 g of dark red crystals. These were recrystallized from acetone-ether. Analytical data were consistent with

the formula $(BrSb[Fe(CO)_2(\pi-C_sH_s)]_3$, $(FeBr_4)^{1/2}(CH_3)$, CO.

(ii) A solution of 3.2 g (8.85 mmol) of $SbBr_3$ and 9.1 g (21.8

mmol) of $[Fe(CO)_2(\pi-C_sH_s)]_2$ in 60 ml of methyl ethyl ketone was refluxed for 5 **hr** during which time CO was evolved and a red-brown crystalline solid was deposited (7.8 8). This was removed and extracted with 200 ml of acetone. Evaporation of this solution to a small volume gave dark red crystals of the above product.

reaction was added a solution of 0.15 g of NaB(C₆H₅)₄ in 5 ml of ethanol, affording a red precipitate of $(BrSb[Fe(\text{CO})_2(\pi-C_sH_s)]_3)$ - $(BCC_6H_5)_4$, which was washed with ethanol and ether and recrystallized twice from acetone; yield 0.2 g. To an ethanol solution of 0.3 g of the product obtained from this

aqueous solution using 0.15 **g** of Reinecke salt rather than NaB- $(C_{\epsilon}H_{\epsilon})_a$. The red precipitate so obtained was recrystallized from a small volume of acetone by addition of ether to yield dark red needles of **(BrSb[Fe(CO)**₂(π-C₅H₅)]₃)(Cr(SCN)₄(NH₃)₂) 3(CH₃)₂CO. The **tetrathiocyanatodiamminechromate(II1)** salt was prepared in

Bis(bromodicarbonylcyclopentadieny1iron) tribromoantimony- **(III),** $\text{Br}_3\text{Sb}[\text{BrFe(CO)}_2(\pi\text{-}C_5\text{H}_5)]_2$ **.** An ether solution of 2.0 g (5.5) mmol) of $SbBr_3$ and 1.0 g (2.8 mmol) of $[Fe(CO)₂(\pi-C₅H₅)]₂$ was allowed to stand at 20" for 3 days. The orange precipitate was removed and the solution was evaporated to dryness. The residue was extracted with ether and the extract was evaporated to small volume and cooled to -80° giving red crystals of product. These were recrystallized from ether; yield 0.2 g.

Diiodo(dicarbonylcyclopentadienyliron)antimony(III), I, SbFe- $(CO)_{2}(\pi-C_{5}H_{5})$. A suspension of 2.5 g (5.0 mmol) of finely ground $SbI₃$ was stirred for 4 days at 20° with 1.7 g (4.8 mmol) of $[Fe(CO)₂(\pi-C_sH_s)]₂$ in 50 ml of $CH₂Cl₂$. The solution was filtered and evaporated to 20 ml. Addition of 10 ml of pentane afforded red crystals of product which was recrystallized from CH₂Cl₂-pentane; yield 1.1 g.

taining 2.2 g (12.2 mmol) of $AsCl₃$ and 1.7 g (4.8 mmol) of $[Fe(CO)₂(π -C₅H₅)]₂ in 10 ml of CH₂Cl₂ was allowed to stand at 20[°]$ for 7 days. At the end of this time 0.85 g of large dark brown cubes of A had deposited. These were removed and the solution allowed to stand for another 7 days affording a further 0.4 g of A. The orange mother liquor was evaporated to a small volume and n -pentane added giving brown crystals of **B.** The mother liquor from this stage was then evaporated to a very small volume affording yellow crystals which were characterized as $Cl₂ AsFe(CO)₂(\pi-C₅H₅)$ after recrystallization from CH_2Cl_2 -n-pentane. Reaction of AsCI₃ with $[Fe(CO)₂(\pi-C₅H₅)]₂$. A solution con-

A and B have not yet been fully characterized; however recrystallization from acetone-ether gave orange-brown needles of $(Cl_2As[Fe(CO)_2(\pi-C_sH_s)]_2)$ (FeCl₄).

Reaction of AsBr, with $[Fe(CO), (\pi \cdot C, H_*)]_2$ **.** A solution of 2.1 g (6.7 mmol) of AsBr₃ and 1.2 g (3.4 mmol) of $[Fe(CO)₂(\pi-C_sH_s)]₂$ in 10 ml of $CH₂Cl₂$ was allowed to stand at 20° for 1 week. Pentane was then slowly added to the solution to precipitate red crystals which were then recrystallized three times from $CH₂Cl₂-n$ -pentane giving 0.3 g of $(\text{Br}_2\text{As}[\text{Fe(CO)}_2(\pi\text{-}C_sH_s)]_2)(\text{FeBr}_4)$.

The mother liquor from the deposition of this compound was treated with more n-pentane and evaporated to a small volume to afford brown crystals. These were recrystallized from CH_2Cl_2 -npentane to give 0.2 g of $Br₂ AsFe(CO)₂(\pi-C₅H₅)$. The mother liquor from this step was evaporated leaving an oil which gave a dark purple solid on washing with n-pentane. The solid was recrystallized from CH,Cl,-n-pentane to give a compound whose analysis was consistent with the formula $Br_3As[BrFe(CO)_2(\pi-C_5H_5)]_3$.

Dichloro(dicarbonylcyclopentadienyliron)bismuth(III), Cl₂BiFe- (CO) , $(\pi\text{-}C, H,$). A suspension of 6.3 g (20.0 mmol) of finely pulverized BiC1, was stirred at room temperature with 3.6 g (10.2 mmol) of $[Fe(CO)₂(\pi-C₅H₅)]₂$ in 40 ml of $CH₂Cl₂$. The BiCl₃ dissolved while a bright red solid was deposited (6.4 g). It was recrystallized from 400 ml of acetone by evaporation to a small volume giving dark red sparkling crystals of product.

giving dark red sparkling crystals of product.
Reaction of NaCo(CO)₃P(C₆H₅)₃ and (Co(CO)₃P(C₆H₅)₃)₂ with
SbX₃, (i) A solution of 4.93 mmol of NaCo(CO)₃P(C₆H₅)₃ prepared by sodium amalgam reduction of 2.0 g (2.47 mmol) of $[Co(CO)₃P (C_6H_5)$ ₃]₂ in THF was treated with 1.2 g (5.25 mmol) of SbCl, at 20° for 1 hr. The deep red solution was then evaporated and extracted with $CH₂Cl₂$. Addition of *n*-pentane to this solution gave dark red crystals of product which were purified by recrystallization from $CH₂Cl₂$ and pentane. A similar reaction occurred using a ratio of 10 mmol of the sodium salt to 6 mmol of $SbCl₃$; in this case, however, the product was recrystallized once from THF and twice from $CH₂Cl₂-n$ -pentane giving a deep red crystalline material whose analysis was consistent with $(Sb[Co(CO), P(C_6H_3),]_4)$, (Sb_2Cl_2) .

in 30 ml of 1,2-dichloroethane was refluxed with 0.45 g (1.47 mmol) of SbCl₃ for 4 hr. The deep purple solution so produced was filtered and evaporated to a small volume. Addition of 15 ml of CH₂Cl₂ followed by slow addition of *n*-pentane gave 0.9 g of dark red crystals which were recrystallized from $CH₂Cl₂$. This compound has the same infrared spectrum in the $\nu(CO)$ region as the product of (i). It was used to prepare the salts $(Sb[Co(CO)_3P(C_6\hat{H}_s)_3]_4)$ - (PF_6) and $(\text{Sb}[\text{Co(CO)}, \text{P(C}_6H_5)_3]_4)(\text{Cr(SCN)}_4(\text{NH}_3)_2)$ by treating acetone solutions with $NaPF_6$ and Reinecke salt in methanol using methods similar to those described above for the preparation of other such salts. (ii) A suspension of 1.6 g (2.0 mmol) of $(Co(CO), P(C, H))$,

The corresponding bromo derivative $(Sb[Co(CO),PC_{6}H_{s})_{3}]_{4})_{3}$ - (Sb_5Br_{18}) was prepared from 5 mmol of NaCo(CO), $P(C_6H_5)$, and 1 mmol of $SbBr₃$ by a procedure similar to (i) above. The salt $(Sb[Co(CO)_3P(C_6H_5)_3]_4)(B(C_6H_5)_4)$ was prepared from an acetone solution of this derivative using $NaB(C_6H_5)$, in methanol.

Tris(tricarbonyltriphenylphosphinecob~t)bismuth(III), Bi *[Co-* (CO) ₃ $P(C_6H_5)$ ₃]₃. Bismuth trichloride (0.7 g, 2.2 mmol) in 10 ml of THF was treated with 5 mmol of $NaCo(CO)$, $P(C_6H_5)$, in THF. The deep red solution was stirred at 20" for 0.5 hr and evaporated to dryness. The residue was extracted with 80 ml of CH_2Cl_2 and the solution was evaporated to about *5* ml affording dark crystals of product which were recrystallized from CH_2Cl_2 .

Dichloro(dicarbonyltriphenylphosphinenitrosyliron)arsenic(III), Cl_2 AsFe(CO)₂(NO)P(C_6H_5)₃. A suspension of 2.0 g (2.0 mmol) of $Hg[Fe(CO)_2(NO)P(C_6H_5)_3]_2$ in 15 ml of benzene was treated with 1.0 g (5.35 mmol) of AsCl₃ and stirred at 20 $^{\circ}$ for 1 day. The dirty yellow suspension was then filtered and the brown solution was evaporated to dryness giving 1.0 g of crude product. This was purified by recrystallization from $CH₂Cl₂-n$ -pentane.

Tetrabromoferrate(III), $(Sb[Fe(CO)_2(NO)P(C_6H_5)_3]_4)(FeBr_4)$. A solution of 5.0 mmol of NaFe(CO)₂(NO)P(C_6H_5)₃ in THF was treated with 0.9 g (2.5 mmol) of SbBr,. The deep purple solution so formed was stirred at 20" for 0.5 **hr** and then evaporated to dryness. The residue was extracted with 30 ml of $CH₂Cl₂$ and filtered. Slow addition of n-pentane to the filtrate gave 1.5 g of very dark red crystals of product which was recrystallized from CH_2Cl_2 -n-pentane. $Tetrakis(dicarbonyltriphenylphosphinenitrosyliron)antimony(V)$

The tetrachloroferrate(III) derivative, $(Sb[Fe(CO)_{2}NO)P$ - $(C_6H_5)_3$ ₄)(FeCl₄), was prepared in a similar fashion from 5.3 mmol of $SbCl₃$ and 11.9 mmol of NaFe(CO)₂(NO)P($C₆H₅$)₃ in THF. Dichloromethane solutions of this salt were used to prepare the salts $(Sb[Fe(CO)₂(NO)P(C₆H₅)₃]₄)(PF)₆$ and $(Sb[Fe(CO)₂(NO)P-$

 $(C_6H_5)_3$, $(Cr(SCN)_4(NH_3)_2)$ by addition of methanol solutions of NaP F_6 and Reinecke salt and were recrystallized from CH, Cl,-npentane.

 $Dichloro(dicarbonyltriphenylphosphinenitrosyliron) bismuth(III),$ Cl_2 BiFe(CO)₂(NO)P(C_6H_5)₃. A THF solution of 6.0 mmole of $NaFe(CO)₂(NO)P(C₆H₅)₃$ was added to 1.9 g (6.0 mmol) of BiCl₃ in the same solvent and the mixture was stirred at 20" for 0.25 hr. After removal of the THF the solid residue was extracted with acetone $(\sim\!300$ ml) and the solution was filtered and evaporated to about 10 ml giving 1.8 **g** of red crystals. The product was recrystallized from acetone and dried *in vacuo.*

 $Tris (dicarbonyl triphenylphosphinen it rosyliron) bismuth (III),$ Bi[Fe(CO)₂(NO)P(C₆H₅)₃]₃. Bismuth trichloride (0.6 g, 1.9 mmol)
in THF was treated with 6.0 mmol of NaFe(CO)₂(NO)P(C₆H₅)₃ and the mixture was stirred at 20" for 1 **hr.** The solution was evaporated and the residue was extracted with 70 ml of CH_2Cl_2 . The extract was filtered and evaporated to 20 ml and n-pentane added affording 2.4 g of crude product. This was recrystallized from CH_2Cl_2 .

Tris(tricarbonylnitrosyliron)bismuth(III), Bi(Fe(CO),NO),. A solution of 3.0 g (5.55 mmol) of $Hg(Fe(CO)_3NO)_2$ in THF was reduced with sodium amalgam and added to 1.1 g (3.5 mmol) of BiCl₃. After 0.25 **hr** at 20" the solvent was removed and the residue was extracted with *n*-pentane. After filtration the extract was evaporated to a small volume giving 0.6 g of glistening black crystals which were recrystallized from n-pentane. The product was unstable at room temperature.

Discussion

The present work represents a preliminary survey of two synthetic methods which can be used for the preparation of group V derivatives of transition metal carbonyls where the group V element acts as a one-electron donor. So far $Fe(CO)₂Cp, Co(CO)₃PPh₃$, and $Fe(CO)₂(NO)$ L derivatives have been isolated from reactions involving EX_3 with Na or Hg derivatives of metal carbonyl anions or EX_3 with metal carbonyl species containing metal-metal bonds. Analytical and other pertinent data for new compounds are listed in Table I.

products of the reaction of SbCl₃ and SbBr₃ with $(Fe(CO)₂$. $Cp)_2$ were found to depend on the solvent in which the reaction was carried out. In dichloromethane solution the ionic derivatives $\left[\text{Cl}_2\text{Sb}(\text{Fe}(\text{CO})_2\text{Cp})_2\right]^+$ $\left[\text{Sb}_2\text{Cl}_7\right]^-\$ and $\left[\text{Br}_2\text{Sb}(\text{Fe}-) \right]$ $(CO)₂Cp)₂$ ⁺[SbBr₄]⁻ were formed. They were found to have molar conductivities of 47 and 71 Ω^{-1} mol⁻¹ cm², respectively. These rather low values could be due to association *via* halogen bridging in solution. The existence of a positive charge on the cation is consistent with the higher carbonyl stretching frequencies (see Table I) compared with those of the neutral isoelectronic $X_2Sn(Fe(CO)_2Cp)_2^{14,15}$ species (X = Cl, ν (CO) 2040 (sh), 2025 (vs), 1993 (vs) cm⁻¹ (Nujol mull); $X = Br$, $\nu(CO)$ 2027 (s), 2002 (s), 1973 (s), 1959 (m, sh) cm^{-1} (CHCl₃ solution). Recently the crystal structure of the chloro derivative has been determined by Einstein and Jones¹⁶ confirming the proposed formula. The structure involves discrete $Cl_2Sb(Fe(CO)_2Cp)_2^+$ groups and double chains of $SbCl₃$ and $SbCl₄$ ⁻ groups linked by chlorine bridges. The repeating anion unit in the solid appears to be $Sb_4Cl_{14}^{2}$. If the anion survives as a polymer in solution this may explain the low conductivity. The large size of the anion would result in decreased mobility and hence decreased conductivity. The reduction in the number of charge carriers would have the same effect. This interpretation is strengthened by the higher conductivities of the $Cr(SCN)_{4}(NH_{3})_{2}^{-}$ and PF_6^- salts where anion association is very unlikely. $Fe(CO)₂Cp$ Derivatives. As reported previously¹³ the

The formal oxidation number of antimony in these derivatives can be regarded as either V where the $[X_2Sb(Fe(CO))_2$ -

(14) F. Bonati and G. Wilkinson, *J. Chem. Soc.,* 179 (1964). (15) D. **J.** Patmore and W. **A.** G. Graham, Inorg. *Chem., 5,* 1405 (1966).

(16) F. W. B. Einstein and R. D. G. Jones, unpublished results.

 Cp)_{2} ⁺ ion is considered as a derivative of SbCl₄⁺ (produced by removal of X⁻ from Sb^VX₅) or as III where X_2 (Fe- $(CO)₂CP$)Sb: acts as a two-electron donor toward the other iron giving a derivative of the known $Fe(CO)_{3}Cp^{+}$ ion. The latter case would be analogous to the $Ph_3SbFe(CO)_{2}Cp^+$ ion.¹⁷ The true state of affairs probably lies between these two extremes.

If the reaction of SbX_3 with $(Fe(CO)_2Cp)_2$ is carried out in benzene or THF, Newlands and coworkers 13 found that only the neutral species $X_2SbFe(CO)_2Cp$ and $XSb(Fe(CO)_2 Cp)_2$ together with $XFe(CO)_2Cp$ were formed

 $SbX_3 + (Fe(CO)_2Cp)_2 \rightarrow X_2SbFe(CO)_2Cp + XSb(Fe(CO)_2Cp)_2$

These reactions can be described in terms of an initial insertion of SbX_3 into the Fe-Fe bond (oxidative addition to the antimony) followed by elimination from the intermediate $[X_3Sb(Fe(CO)_2Cp)_2]$ of either $XFe(CO)_2Cp$ or X^- with formation of the neutral or ionic species, respectively

 $[CpFe(CO)₂]_2 + SbX_3 \rightarrow [Cp(CO)₂FeSbX₃Fe(CO)₂Cl]$

$$
[Cp(CO)2FeSbX3Fe(CO)2Cp] \n\begin{cases} \nCp(CO)2FeX + SbX2Fe(CO)2Cp\\ \nX^- + [X_2Sb(Fe(CO)2Cp)2]^+ \n\end{cases}
$$

Alternatively since molten $SbCl₃$ is believed to ionize to some extent to $SbCl_2^+$ and $SbCl_4^-$ ¹⁸ and if a similar ionization were to occur in CH_2Cl_2 solution, insertion of $SbCl_2^+$ into the Fe-Fe bond could occur giving $\lbrack Cl_2Sb(Fe(CO)_2 \text{Cp}_2$ ⁺ [SbCl₄]⁻ directly. This would be analogous to the well-known insertion reactions of tin and germanium dihalides^{14,15}

 $(CpFe(CO)₂)$ ₂ + $[SbX₂]⁺ \rightarrow [(Cp(CO)₂Fe)₂SbX₂]⁺$

However we find that the measured conductivity of SbCl₃ in CH₂Cl₂ is very low (about 0.012 Ω^{-1} mol⁻¹ cm² at 32 mmol/l.) and 0.030 at 6 mmol/l.) so that the extent of such ionization can only be very small.

 $(Fe(CO)₂CP)₂$ in $CH₂Cl₂$, red crystalline products of formula $(SbX_3)(XFe(CO)_2Cp)_2$ were isolated. The chloride could also be prepared simply by mixing $SbCl₃$ with $ClFe(CO)₂Cp$ in ether. The crystal structure of the latter compound has been determined by Einstein and McGregor¹⁹ and is found to be dimeric as shown in Figure 1. The molecule has a center of symmetry: the bridging chlorine atoms of the $Cp(CO)₂FeCl$ moieties are noteworthy. As minor by-products in the reaction of $SbCl₃$ with

Bigorgne and coworkers²⁰ have described infrared evidence for interactions between metal carbonyl halides and potential Lewis acids such as $FeCl₃$, AlBr₃, and SbCl_s but the adducts were not characterized.

The trifluoromethylantimony derivative $(CF_3)_2$ SbI reacted in a similar fashion to SbX_3 with $(Fe(CO)_2Cp)_2$ resulting in the formation of $[(CF_3)_2Sb(Fe(CO)_2Cp)_2]^+[(CF_3)_2SbI_2]^-$. The pseudohalogen character of fluorocarbon groups^{21,22} is seen in this reaction. Very few anions containing only CF_3 , E, and halogen are known²³ and cations containing a group V element bonded to a fluorocarbon group were previously

- (17) A. Davidson, M. L. H. Green, and G. Wilkinson, *J. Chem. Soc.,* 3172 (1961).
- (18) D. *S.* Payne, "Non-Aqueous Solvent Systems," T. C. Waddington, Ed., Academic Press, New York, N. Y., 1965. (19) F. W. B. Einstein and A. C. McGregor, unpublished results.
- (20) M. Pankowski, B. Demerseman, G. Bouquert, and M. Bigorgne, *J.* Organornetal. *Chem.,* **35,** 155 (1972).
- (2 1) R. E. Banks, "Fluorocarbons and Their Derivatives,"
- (22) H. J. Emeleus, "The Chemistry of Fluorine and Its Com- Oldbourne Press, London, 1964. pounds,'' Academic Press, New York, N. Y., 1969.

(23) *S.* S. Chan and C. **J.** Willis, Can. *J. Chem.,* 46, 1236 (1968), and references therein.

Figure 1. The structure of $[SbCl_3(Fe(CO)_2CpCl)_2]_2$.

unknown, although ions such as $[(CF_3)_3PC1]^+$ and $[(CF_3)_3$. $PCl₃$ ⁻ have been postulated to account for the conductivity of $(CF_3)_3PCl_2$ in acetonitrile.²⁴

usually afford $(CF_3)_2E$ bridged species.²⁵ The reaction of $(CF_3)_4Sb_2$ with $(Fe(CO)_2Cp)_2$ gave what is believed to be $(CF_3)_2SbFe(CO)_2Cp$ but the material was not stable enough for a microanalysis. It would be analogous to the known arsenic derivative.² The reactions of $(CF_3)_2EX$ (E = P, As) with metal carbonyls

 $(CpFe(CO)₂)₂ + (CF₃)₂E-ECF₃)₂ \rightarrow CpFe(CO)₂E(CF₃)₂$ $E = As$, Sb

The reactions of SbCl₃ and SbBr₃ with $(CpFe(CO)₂)₂$ under more forcing conditions gave $XSb(Fe(CO)₂Cp)₃$ ⁺ salts. Thus SbC13 in refluxing 1,2-dichloroethane gave a crystalline material which on recrystallization from acetone-ether gave two crystalline fractions, one only slightly soluble in acetone and the other much more so. The former has not yet been characterized, but the latter appears to be $[Clsb(Fe(CO)₂-])$ $C[p)_3$ [FeCl₄], on the basis of analytical and magnetic data $(\mu_{\text{eff}} = 5.5 \text{ BM})$. The identity of the cation was confirmed by the characterization of the BPh₄⁻, PF₆⁻, and Cr(SCN)₄- $(NH_3)_2$ ⁻ salts. This same cation was isolated as the FeCl₄²⁻ $(CpFe(CO)₂)₂ + SbX₃ \rightarrow [(Cp(CO)₂Fe)₃SbX]⁺_n[FeX₄]ⁿ⁻$

$$
X = CI, n = 1; X = Br, n = 2
$$

salt from a reaction involving the interaction of $[Fe(CO)_2Cp]$ with $SbCl₃.¹¹$ The structure of the compound which was eventually isolated, $[Clsb(Fe(CO)_2Cp)_3]_2[FeCl_4]$ CH_2Cl_2 , was confirmed by an X-ray study.¹¹

Antimony tribromide underwent a similar reaction with $(Fe(CO)₂Cp)₂$ on heating to 120° under 800 psi pressure of CO as well as on refluxing together in methyl ethyl ketone. The product is believed to be a solvated $FeBr_4^2$ salt [BrSb-(Fe(CO)₂Cp)₃]₂ [FeBr₄] \cdot ¹/₂(CH₃)₂CO analogous to the FeCl₄²⁻ derivative mentioned above. The presence of acetone was confirmed by a band at 1700 cm^{-1} in the infrared spectrum, which vanished on heating *in vacuo.* The presence of the $FeBr_4^2$ - ion was supported by magnetic measurements $(\mu_{\text{eff}} = 4.3 \text{ BM})$. Again the identity of the cation was confirmed by conversion to the BPh_4^- and $Cr(SCN)_4$ - $(NH₃)₂$ ⁻ salts. Conductivity measurements of all of the

(24) H. J. Emeleus and G. S. Harris, J. Chem. Soc., 1494 (1959).
(25) E.g., J. Grobe, Z. Anorg. Allg. Chem., 331, 63 (1964); 361, 32 (1968).

above compounds were consistent with 1 : 1 electrolytes (or 2:1 in the case of the $FeBr_4^2$ salt).

Antimony pentachloride reacted with $(Fe(CO)_2Cp)_2$ with CO evolution and formation of $[Cl(Fe(CO)_2Cp)_2][SbCl_6]$. The PF_6^- and BF_4^- salts have previously been described.²⁶ In our case the $SbCl₅$ is acting as a chlorinating agent.

 $(Fe(CO)_2Cp)_2 + SbCl_5 \rightarrow [Fe(CO)_2ClFe(CO)_2Cp]^+SbCl_6^-$

 Cp_2 in CH_2Cl_2 solution although in this case both the neutral X_2 AsFe(CO)₂Cp species and the ionic $[X_2As(Fe (CO₂CD₂]$ [FeX₄] derivatives were formed Arsenic trihalides were also found to react with $(Fe(CO)₂ -$

$$
(\text{Fe(CO)}_2\text{Cp})_2 + \text{AsX}_3 \rightarrow \text{X}_2\text{ASFe(CO)}_2\text{Cp} + [\text{X}_2\text{As(Fe(CO)}_2)_2]^+ [\text{FeX}_4]^-
$$

Reaction paths similar to those proposed for the SbX_3 reactions are possible. In the $AsCl₃$ case other, as yet incompletely characterized, products were obtained. Thus with an $AsCl₃: (Fe(CO)₂CP)₂$ ratio of 1:1 brown crystals were gradually deposited during the course of 1 week. These were tentatively formulated as $\left[\text{Cl}_2\text{As}(\text{Fe(CO)}_2\text{Cp})_2\right]_2\left[\text{FeCl}_4\right]$ on the basis of an elemental microanalysis. *Anal.* Calcd: C, 28.45; H, 1.67; C1,23.7. Found: C, 28.60; H, 1.53; C1, 23.15. However with a ratio of 2.5:l the deposit of brown cubic crystals has different C:C1 ratio, possibly due to replacement of FeCl₄²⁻ by FeCl₄⁻. *Anal.* Calcd for $\left[\text{Cl}_2\text{As-}\right]$ $(Fe(CO)₂CP)₂$]₃[FeCl₄]₂: C, 26.6; H, 1.58; Cl, 26.2; Fe, 23.6. Found: C, 26.3; H, 1.63; C1,24.9; Fe, 23.2. In fact when the latter compound was recrystallized from acetoneether pure $\left[\text{Cl}_2\text{As}(\text{Fe(CO)}_2\text{Cp})_2\right]$ [FeCl₄] was produced. This was characterized by an elemental analysis and conductivity and magnetic measurements (Table I). Also the $\nu(CO)$ bands in the infrared spectrum were very similar in position and intensity to those of the analogous $[X_2Sb(Fe(CO)_2Cp)_2]^+$ ion. The neutral Cl_2 AsFe(CO)₂Cp species was isolated from the mother liquor after separation of the above $\left[\mathrm{Cl}_2\mathrm{As}\right]$ $(Fe(CO)₂CP)₂$ ⁺ salts.

The reaction of AsBr₃ with $(Fe(CO)₂CP)₂$ was more straightforward in that the only major products were $[Br₂As (Fe(CO)₂CP)₂$ [FeBr₄] and Br₂AsFe(CO)₂Cp, although red crystals of $(Br₃As)(BrFe(CO)₂Cp)$ ₃ were isolated as a byproduct. The latter compound is presumably similar to the previously mentioned $(Cl_3Sb)(ClFe(CO)_2Cp)_2$ (Figure 1).

Bismuth derivatives were also prepared by the reaction of BiX_3 on $(Fe(CO)_2Cp)_2$. Bismuth trichloride reacted in $CH₂Cl₂$ solution with formation of red crystals of $Cl₂BiFe (CO)_{2}Cp$. Newlands and coworkers found that a similar reaction occurred with $BiBr_3$ and BiI_3 in benzene solution, the other product being $XFe(CO)_2Cp$. The absence of cations containing bismuth is not unexpected in view of the usual instability of BiV derivatives.

 $BiX_3 + (Fe(CO)_2Cp)_2 \rightarrow X_2BiFe(CO)_2Cp$

Co(CO) ³PPh₃ Derivatives. Antimony trichloride and BiI₃ had previously been found to react with $Co_2(CO)_8$ to produce $Cl_2SbCo(CO)_4$ and $Bi(Co(CO)_4)_3$, respectively.¹² On attempting to extend this work to SbX_3 and $(Co(CO)_3PPh_3)_2$ it has been found that the expected $Cl₂SbCo(CO)₃PPh₃$ was not formed, although the compound could be prepared from the tetracarbonyl and PPh₃.¹² Instead, a very deep red, almost black, crystalline material was obtained on refluxing $SbCl₃$ or $SbBr₃$ with $(Co(CO)₃PPh₃)₂$ in 1,2-dichloroethane. Although these compounds themselves have not yet been fully characterized, magnetic measurements show that they

⁽²⁶⁾ E. **0.** Fischer **and** E. Moser, **Z.** *Anovg. Allg. Chem.,* **342, 156 (1966);** *J. Ovganometal. Chem.,* **3, 16 (1965);Z.** *Naturfovsch. B,* **20, 184 (1961).**

are paramagnetic and probably contain CoX_4^2 . They were shown to be salts of the $Sb(Co(CO)_3PPh_3)_4^+$ cation by conversion to the PF_6^- and $Cr(SCN)_4(NH_3)_2$ ⁻ salts. The same cation was formed by the reaction of SbX_3 with Co(CO)₃- PPh_3 ⁻ in THF; in this case the products which were diamag-

$SbX_3 + (Co(CO)_3PPh_3)_2 \rightarrow [Sb(Co(CO)_3PPh_3)_4]^+A^-$

netic were tentatively characterized as the $\text{Sb}_5 \text{X}_{18}$ ³⁻ $((SbX_4^-)_3(SbX_3)_2)$ salts; this however is supported only by total elemental analyses and so should be accepted with reservations. On recrystallization of the chloro derivative from THF and ether, followed by $CH₂Cl₂$ and pentane, the microanalytical data indicated that it had been converted to the Sb₂Cl₉³⁻ salt through loss of SbCl₃ (possibly due to formation of a stable THF complex of $SbCl₃$). The infrared carbonyl stretching bands (Table I) of all of the above Sb(Co- $(CO)_{3}PPh_{3})_{4}^{+}$ salts were identical within the limits of experimental error. The conductivities were consistent with the proposed formulas.

forming the neutral $Bi(Co(CO)_3PPh_3)$, derivative when $BiCl_3$ was treated with $Co(CO)_{3}PPh_{3}^{-}$ Again bismuth behaved differently from antimony in

 $BiCl₃ + [Co(CO)₃PPh₃]⁻$ $\rightarrow Bi(Co(CO)₃PPh₃)₃$

tin derivatives of $Fe(CO)₂(NO)PPh₃$ by the reaction of $SnX₄$ and $RSnX₃$ with Hg(Fe(CO)₂(NO)PPh₃)₂ was recently reported.27 Attempts to extend this particular method to the synthesis of analogous group V derivatives have so far only been successful with $AsCl₃$, reaction of which with Hg(Fe- $(CO)₂(NO)PPh₃)₂$ afforded $Cl₂AsFe(CO)₂(NO)PPh₃$. Since we had found that $Co(CO)_{3}PPh_{3}^{-}$ reacts with SbX₃ giving $Fe(CO)_{2}(NO)PPh_{3}^{-}$ Derivatives. The synthesis of various the Sb(Co(CO)₃PPh₃)₄⁺ cation, the analogous reaction of $37260.98.3$; Cl₃Sb(ClFe(CO)₂Cp)₂, 37261-02-2; Br₃Sb- $Fe(CO)_2(NO)PPh_3^-$ (from the sodium amalgam reduction of the $(BrFe(CO)_2Cp)_2$, 37261-01-1; $[C1(Fe(CO)_2Cp)_2][SbCl_6]$, mercury salt) with SbX_3 was attempted and indeed gave the 38386-61-7; $[Sb(Fe(CO)_2(NO)Ph_3)_4][FeCl_4]$, 38415-51 mercury salt) with SbX₃ was attempted and indeed gave the 38386-61-7; $[Sb(Fe(CO)_2(NO)PPh_3)_4] [FeCl_4]$, 38415-51-9; isoelectronic Sb(Fe(CO)₂(NO)PPh₃)₄⁺ cation $[Sb(Fe(CO)_2(NO)PPh_3)_4] [FeBr_4]$, 38498-44-1; $[Sb(Fe(CO)_2)$

In this case the anion appeared to be FeX_4^- on the basis of $37261.05-5$; $[Sh(Co(CO)_3PPh_3)_4]_3[Bb_2Cl_9]$, $37261.04-4$; microanalytical data and magnetic susceptibility measure-

Neutral bismuth derivatives only were isolated from rex- $Bi(Fe(C))$, $(NO)PPh_3$)₃. $E_i(Fe(C))$, $(NO)PPh_3$)₃. (NO) ₂. 38402-91-4.

(27) M. Casey and A. R. Manning, *Chem. Commun.***, 674 (1970).**

Conclusions

carbonyl anions with group V trihalides EX_3 produce a wide range of ionic and neutral compounds, containing $M-E$ σ bonds. In the neutral species bismuth can form bonds with up to three metal atoms as in $Bi(Co(CO)_3PPh_3)_3$. Antimony can form two as in $XSb(Fe(CO)₂Cp)₂$, and arsenic only one as in Cl_2 AsFe(CO)₂(NO)PPh₃. In the cationic species arsenic is bonded to two iron atoms in $\left[\text{Cl}_2\text{As}(\text{Fe(CO)}_2\text{Cp})_2\right]^+$ yet the same metal group will form three bonds to antimony as in $[Clsb(Fe(CO), Cp)]$ ⁺. Four M-E bonds are formed by antimony in the ions $[Sb(Fe(CO)₂(NO)PPh₃)₄]⁺$ and $[Sb(Co-₅CO)]$ $(CO)_{3}PPh_{3})_{4}$ ⁺. The reactions are not simple as is evidenced by the isolation of salts of FeX_4^2 ⁻ and FeX_4^2 . The tendency of antimony halides in particular to form polyhalo anions is a further complicating factor. Nevertheless the results indicate that there is a rich chemistry to be discovered in these previously neglected derivatives. The reactions of $(CpFe(CO)_2)_2$, $(Co(CO)_3PPh_3)_2$, and metal

Cp, 34823-24-0; Cl_2 AsFe(CO)₂NOPPh₃, 38415-50-8; $[Cl_2$ As- $(Fe(CO)₂CD)₂$ [FeCl₄], 37279-44-0; [Br₂As(Fe(CO)₂Cp)₂] - $[FeBr_4]$, 38386-58-2; $Br_3As(CIFe(CO)_2Cp)_3$, 37260-91-6; $[C1_2Sb(Fe(CO)_2Cp)_2][Sb_2Cl_7]$, 11082-37-4; $[C1_2Sb(Fe(CO)_2 \text{Cp}_2$][PF₆], 38386-59-3; [Cl₂Sb(Fe(CO)₂Cp)₂][Cr(SCN)₄- $(NH_3)_2$, 37279-45-1; $Br_2Sb(Fe(CO)_2Cp)_2[SbBr_4]$, 38386-60-6; **[(CF3)2Sb(Fe(C0)2Cp)2][(CF3)2Sb12],** 37270-75-0; $[CISb(Fe(CO)_2Cp)_3][FeCl_4]$, 37260-95-0; $[CISb(Fe(CO)_2Cp)_3]$ - $[PF_6]$, 37260-96-1; $[ClSb(Fe(CO)_2Cp)_3][Cr(SCN)_4(NH_3)_2]$, $37260-94-9$; $[ClSb(Fe(CO)₂Cp)₃][BPh₄]$, $37260-99-4$; $[BrSb (Fe(CO)_2Cp)_3$ [FeBr₄], 37260-92-7; [BrSb(Fe(CO)₂Cp)₃]- $[Cr(SCN)₄(NH₃)₂]$, 37260-93-8; $[BrSb(Fe(CO)₂CP)₃][BPh₄]$, Registry No. $Cl₂AsFe(CO)₂Cp$, 34823-23-9; Br₂AsFe(CO)₂- $[Sb(Fe(CO)₂(NO)PPh₃)₄][FeBr₄], 38498-44-1; [Sb(Fe(CO)₂ [Fe(CO)_2(NO)PPh_3]^- + SDX_3 \rightarrow [Sb(Fe(CO)_2(NO)PPh_3)_4][FeX_4]$ $(NO)PPh_3)_4][Cr(SCN)_4(NH_3)_2]$, 38415-52-0; $[Sb(Fe(CO)_2 -$
In this case the anion anneared to be FeX_2 on the basis of $(NO)PPh_3)_4][PF_6]$, 38415-53-1; $[Sb(Co(CO)_3PPh_3)_4]_3[Sb_5Cl_{18}]$ ments. Again the cation was characterized by conversion to $[{\rm Sb(Co(CO)_3PPh_3)_4}] {\rm [PF_6]}$, 38415-54-2; $[{\rm Sb(Co(CO)_3PPh_3)_4}]$ -
ments. Again the cation was characterized by conversion to $[{\rm Cr(SCN)_4(NH_3)_2}]$, 38531-35-0; $[{\rm Sb(Co(C$ the PF₆⁻ and Cr(SCN)₄(NH₃)₂⁻ salts. [Cr(SCN)₄(NH₃)₂], 38531-55-0; [S0(CO(CO)₃FF₁₄)₄]₃
[Sb₅B₁₈], 37261-03-3; Cl₂BiFe(CO)₂Cp, 38386-62-8;
[Sb₅B₁₈], 37261-03-3; Cl₂BiFe(CO)₂Cp, 38386 tion of Fe(CO)₂(NO)PPh₃- and Fe(CO)₃(NO)⁻ with BiCl₃, Cl₂BiFe(CO)₂NOPPh₃, 38415-55-3; Bi(Fe(CO)₃NO)₃, 38498-
namely Cl₂BiFe(CO)₂(NO)PPh₂, Bi(Fe(CO)₂NO)₂ and 45-2; Bi(Fe(CO)₂NOPPh₃)₃, 38 namely, Cl₂BiFe(CO),(NO)PPh₃, Bi(Fe(CO)₃NO)₃, and $\begin{array}{c} 45-2$; Bi(Fe(CO)₂NOPPh₃)₃, 38566-00-6; Bi(CO(CO)₃PPh₃)₃,

Acknowledgments. The authors are grateful to the National Research Council of Canada for financial support.